Treg cells mediate recovery from EAE by controlling effector T cell proliferation and motility in the CNS
نویسندگان
چکیده
Regulatory T cells are crucial in controlling various functions of effector T cells during experimental autoimmune encephalomyelitis. While regulatory T cells are reported to exert their immunomodulatory effects in the peripheral immune organs, their role within the central nervous system (CNS) during experimental autoimmune encephalomyelitis is unclear. Here, by combining a selectively timed regulatory T cells depletion with 2-photon microscopy, we report that regulatory T cells exercise their dynamic control over effector T cells in the CNS. Acute depletion of regulatory T cells exacerbated experimental autoimmune encephalomyelitis severity which was accompanied by increased pro-inflammatory cytokine production and proliferation of effector T cells. Intravital microscopy revealed that, in the absence of regulatory T cells, the velocity of effector T cells was decreased with simultaneous increase in the proportion of stationary phase cells in the CNS. Based on these data, we conclude that regulatory T cells mediate recovery from experimental autoimmune encephalomyelitis by controlling cytokine production, proliferation and motility of effector T cells in the CNS.
منابع مشابه
اثر درمانی آل-ترانس رتینوییک اسید در آنسفالومیلیت تجربی خود ایمن و نقش آن در پاسخهای لنفوسیتهای T کمکی
Background: Recent studies have demonstrated an essential role for IL-17 in the pathogenesis of experimental autoimmune encephalomyelitis (EAE). Furthermore, it has been shown that FoxP3+Treg cells play an important role in the suppression of autoinflammatory reactions. Although, previous studies have determined the immunomodulatory potentials of all-trans-retinoic acid (ATRA), but these immuno...
متن کاملKinetics of T cell response in the testes and CNS during experimental autoimmune encephalomyelitis: Simultaneous blood-brain and -testis barrier permeability?
Objective(s): Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are regarded as autoimmune diseases of the central nervous system (CNS). The CNS, testes, and eyes are immune privileged sites. It was initially presumed that ocular involvement in EAE and infertility in MS are neural-mediated. However, inflammatory molecules...
متن کاملB cell regulation of CD4+CD25+ T regulatory cells and IL-10 via B7 is essential for recovery from experimental autoimmune encephalomyelitis.
CD4(+)CD25(+) T regulatory (Treg) cells expressing the Foxp3 transcription factor have been shown to be present in the CNS during the autoimmune disease experimental autoimmune encephalomyelitis (EAE) and can inhibit EAE clinical disease by an IL-10-dependent mechanism. In addition, IL-10 expression in the CNS late in the EAE disease course has been attributed to recovery. However, it is not kn...
متن کاملPituitary Adenylate Cyclase Activating Peptide Deficient Mice Exhibit Impaired Thymic and Extrathymic Regulatory T Cell Proliferation during EAE
We have shown that mice deficient in pituitary adenylate cyclase-activating polypeptide (PACAP, gene name ADCYAP1) manifest enhanced sensitivity to experimental autoimmune encephalomyelitis (EAE), supporting the anti-inflammatory actions described for this neuropeptide. In addition to an increased proinflammatory cytokine response in these mice, a reduction in regulatory T cell (Treg) abundance...
متن کاملمروری بر نقش زیرگروههای لنفوسیتهای T در پاتوژنز بیماری مولتیپل اسکلروزیس
Background and Objectives: Multiple sclerosis (MS) is an autoimmune neurodegenerative disease of the central nervous system (CNS). Although, the contribution of various cells such as B cells, CD8+ T cells, microglia/macrophages, dendritic cells, asterocytes and mast cells in the pathogenesis of MS have been demonstrated, however, it seems that autoreactive myelin specific CD4+ T cells pla...
متن کامل